
Learn more at saucelabs.comLearn more at saucelabs.com

May 2015

Why Continuous Integration
Should be Part of Your
Mobile Development Process

WHITE PAPER

Mobile apps have taken center stage in the world of software development.

This has pushed DevOps teams to consider new ways to ship apps faster and

maintain the same commitment to quality. However, the way to build mobile

apps faster is the same for mobile apps as it has always been for web

apps – continuous integration.

This paper begins by highlighting the fragmented state of the mobile ecosystem

that DevOps teams must grapple with. It suggests that the way to compete

in today’s mobile-first world is to adopt mobile continuous integration. It also

discusses possible approaches, tactics, and tools available to DevOps teams

as they consider mobile continuous integration.

Learn more at saucelabs.com

Table of Contents

Executive summary	

1. Speed and quality are at the core of mobile app development		

2. Piecing together the fragments of the mobile world

	 Platforms - iOS and Android dominate

	 Devices - A reflection of their platforms

	 Apps - Blurring the lines between web and native

3. The DevOps dilemma

4. Extending CI to include mobile app development

	 It starts with build automation

	 API or web services testing

	 Extending CI to include mobile app testing

	 Tools that enable mobile testing automation

5. Appium - The leading cross-platform test automation framework

Conclusion

Appendix - The Internet of Things (IoT) is increasing the need for CI

3

3

3

3

5

6

7

7

8

8

8

9

9

10

11

Learn more at saucelabs.com

3

Executive summary
DevOps teams have discovered that the explosive growth of mobile is a catalyst to speed up mobile development

and drive better innovation. However, fragmentation in the mobile ecosystem has made this hard to achieve,

and the issue is only worsening. Even as many organizations transition their web application development from

waterfall to agile methodologies like continuous integration (CI) and continuous delivery (CD), they are faced with

the elusive goal of further expanding CI to include their mobile app development as well. Despite the challenges,

CI is still the answer to faster mobile app development and higher quality mobile apps.

The key to applying CI to mobile app development lies in automating the build and testing processes. The tools

that enable automation have continuously evolved to keep pace with the rapid growth of mobile. Today, there is a

wide range of tools that serve specific purposes along the entire CI pipeline.

This paper explores how organizations can approach their mobile app development from the perspective of

continuous integration. It focuses on the two steps of automating build and test cycles, and features a variety

of tools that help teams build the next generation of mobile apps.

1. Speed and quality are at the core of mobile app development
Mobile users demand innovation at much greater speed. Apps are installed, tried, and bought in seconds as opposed

to hours or days for traditional apps. Apps that aren’t updated frequently risk becoming outdated and losing a

competitive edge.

In addition, users have higher expectations from mobile apps in terms of personalization and user experience. Users

demand that information be presented in context at the right time, in the right place, and in the right way. These

demands, and the tremendous opportunity they afford, bring mobile app development to the forefront as businesses

compete for leadership in today’s mobile-first world.

The need for faster releases and better applications were the two driving forces that caused organizations to

transition from the traditional waterfall method of building software to agile methodologies like continuous integration

(CI), and continuous delivery (CD). Today, as we make sense of a nascent mobile-first world, CI is even more relevant

as organizations compete on the speed and quality of their mobile app development.

2. Piecing together the
fragments of the mobile world

Platforms - iOS and Android dominate

iOS and Android dominate the mobile ecosystem

with approximately 95% market share between them.

Source: Kantar Worldpanel

Android

USA
3 M/E FEB 2015

BlackBerry

iOS

Windows

Other

55.6%

0.1%

38.8%

4.8%

0.7%

Learn more at saucelabs.com

4

While this may seem fairly consolidated at first, going a level deeper into the different operating system versions

in use will reveal a high level of fragmentation, especially in the case of Android.

Source: IDC, 2/24/2015*Units in Millions

Source: Business Insider, 2/3/2015

Source: OpenSignal, July 2013

Multiple sources attest to this fact:

The dominance of both these platforms has transformed

the mobile ecosystem, bringing application development

to the forefront. They each have over 1M unique apps

listed in their app stores, and this number is still growing

(by over 50% YOY in the case of Android).

Operating System 2014 Unit Volumes * 2014 Market Share

Android 1,059.3 81.5%

iOS 192.7 14.8%

Windows Phone 34.9 2.7%

BlackBerry 5.8 0.4%

Others 7.7 0.4%

Total 1,300.4 100.0%

Total Number Of Apps By App Store

Tech Chart of the Day

iOS App Store Google Play Amazon Appstore

2010 2011 2012 2013 2014

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

iOS 6 (95%)
iOS 6 (5%)
Earlier Version (1%)

4.2x (Jelly Bean) (5.6%)
4.1x (Jelly Bean) (32.3%)
4.0.3 (Jelly Bean) (23.3%)
3.2 (Honeycomb) (0.1%)
2.3.3 - 2.3.7 (G’bread) (34.1%)
2.2 (Froyo) (3.1%)
2.1 (Eclair) (3.1%)
1.6 (Donut) (0.1%)

Android fragmentation of all kinds is usually illustrated in comparison with iOS. These two pie charts

clearly show the di�erence in API fragmentation between the two competing operating systems.

COMPARISON WITH IOS

Learn more at saucelabs.com

5

While iOS and Android are the undisputed leaders, there are a number of new mobile platforms that strive to

challenge their dominance — Windows Phone, Firefox OS, Tizen, and Ubuntu to name a few. App developers need

to be aware of the various operating systems and OS versions and decide which ones their apps should support.

For most apps developed today, iOS and Android support are almost always a given, while support for other

operating systems may vary.

Devices - A reflection
of their platforms

There are only a few iOS device types,

but they have gradually been increasing

in number with pressure from competing

Android devices. Apple has introduced

cheaper and smaller versions of iPhone

and iPad to compete with low-end

Android devices.

The Android device ecosystem, on the

other hand, is highly fragmented with

devices ranging from phones, tablets,

and watches, to TVs, cars, and video

game consoles.

This multitude of devices means their

feature specifications, like screen size,

are extremely varied, as shown by the

following visualization:

July, 2013

July, 2013

July, 2012

July, 2012

Source: OpenSignal

Source: OpenSignal

Learn more at saucelabs.com

6

On the reason for fragmentation within Android, OpenSignal comments, “Cheaper devices will struggle to run

the most recent versions of Android.” However, rather than seeing this as a problem, OpenSignal rightly suggests

that “the fragmented operating system serves as an enabler of an ecosystem that is becoming more globally, and

socio-economically, inclusive.” Thus, fragmentation makes mobile app development more difficult, but it serves the

greater good of increasing mobile adoption globally, and can’t be ignored by mobile development shops.

With the dawn of the Internet of Things (IoT) and wearable devices, it is clear that device fragmentation is only in its

beginning stages, and is bound to get more complex with time (See Appendix).

Apps - Blurring the lines between web and native

In addition to platforms and devices, there are multiple types of mobile apps as well. The two most popular app

types are native and mobile web apps. Here is a comparison of these two types of apps:

A third type of app is a hybrid app. Telerik, maker of the popular KendoUI framework, says, “Hybrid apps are

hosted inside a native application that utilizes a mobile platform’s WebView. This enables them to access device

capabilities such as the accelerometer, camera, contacts, and more.” These apps are used by teams that want

to avoid platform lock-in, and be able to utilize their developers’ existing skills in web app development.

According to Gartner, developers of consumer

apps tend to favor native apps, and developers

of enterprise apps favor hybrid instead.

Mobile web app Native mobile app

App store Not necessary Necessary

Mobile web browser Necessary Not necessary

Requires internet Yes No

Advanced functionality No Yes (leverages phone hardware)

User interface Static Interactive

Speed Fast Very fast

Development cost Reasonable Expensive

Approval process None Sometimes mandatory

Consumer/Enterprise App Split in 2015
100%

Web

Hybrid

Native

Consumer Enterprise

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Source: Gartner, April 2013

Learn more at saucelabs.com

7

When creating a mobile app, developers need to decide what type of app is best suited for their business need.

This can be a difficult decision when considering the fragmentation, lock-in issues with native apps, the lack

of uniformity in HTML5, and a lack of consensus on how effective hybrid apps are.

The fragmentation in the mobile ecosystem results in an extremely complex grid of operating systems, OS versions,

devices, device capabilities, app types, app versions, browsers, and mobile networks. The challenge facing

DevOps teams is the successful navigation of this maze, while out-maneuvering competition by releasing higher

quality apps faster.

3. The DevOps dilemma
Because of increased user expectations, organizations that compete in the mobile space end up with an

aggressive roadmap, and their development teams are always trying to keep up. Mobile app development is slow

and inefficient, often because it still follows the waterfall method of development. User experience is bolted onto

a somewhat functional product, which becomes evident when users start to use the app.

Additionally, mobile app testing can be difficult to scale and often becomes an afterthought. Even if testing on

a single platform is easy, cross-platform testing is a challenge because of limitations with processes and tools.

Functional tests are especially crucial to mobile apps, but are hard to scale on an unmanageable testing grid.

Because of this added complexity with mobile, more things can and do go wrong — operating system, software,

and hardware bugs, hardware limitations or issues — all of these can plague user experience.

Not wanting to compromise on the quality of mobile app testing, some organizations set out to build a device lab

with every possible platform, and device type. However, they soon end up with a maze of devices connected to

desktops that are difficult maintain, don’t produce the desired results, and are very expensive. Considering the

limitations of traditional approaches, continuous integration (CI) is the key to adopting a DevOps approach to

mobile app development.

4. Extending CI to include mobile app development
Continuous integration, as understood from web application development, involves two overarching steps:

•	 Automating builds so they are more frequent

•	 Automating tests to enable faster feedback

In the case of web applications, both these steps

have resulted in better apps being shipped faster.

Considering these benefits, CI should be naturally

extended to include mobile app development and

testing as well. However, for that to happen, we

need to be clear about what continuous integration

for mobile would look like in practice.

Source Control

Build

Testing

Development

Report

Commit
Initiate CI
Process

Test

Learn more at saucelabs.com

8

It starts with build automation

The first step in CI is to automate builds. According to Techopedia, “The term build may refer to the process by

which source code is converted into a stand-alone form that can be run on a computer or to the form itself.”

Once a developer commits source code, it is stored in a software configuration management (SCM) system

which maintains version control for the source code. From here it is automatically converted to executable code.

Builds and commits need to be frequent to enable faster feedback. The best way to increase frequency is to

automate builds. Typically, the build process is automatically triggered by the CI server after every commit to the

SCM. The CI server then executes a build script, which integrates the software. During this entire process, teams

use multiple tools that perform specific functions and work well with each other.

Tools that enable mobile build automation

Build tools: Tools like Make, Ant, Maven, and Gradle help to automate the build process. Gradle is the newest

of the lot, and has been adopted by Google as the default build tool for Android.

CI server: Jenkins has become the most popular CI server because of its ease of use and extensibility. Jenkins has

deep support for mobile app development via plugins. Examples include plugins for Git, Gradle, Xcode, Android

Emulator, and Android Lint. These plugins enable developers to automatically install SDKs and packages, spin up

emulators and simulators, and much more.

Software configuration management (SCM): Subversion (SVN) was the original standard for SCM, but Git has

replaced it as the prefered version control system for most developers as it decentralizes version control. This is

especially well suited for projects that involve multiple developers who need version control even when they are

on the go and may not be connected to the repository.

Platform-specific tools: XCode is the development kit provided by Apple for developing apps for iOS. It includes

an IDE, a compiler, the most recent SDKs, a simulator, and other tools to enable development with iOS. Similarly,

Android Studio, provided by Google, includes an IDE, the Android SDK, and an emulator for developing Android

apps. They are indispensable when building native apps for these platforms.

There are many tools to choose from, and developers have no shortage of options when deciding which tools

to use to automate the build process. With this momentum around build automation, there is no reason why

developers should stick to traditional methods of building apps. The first step on the way to mobile continuous

integration is build automation, and the landscape of modern development tools make this step possible, and

inevitable.

Extending CI to include mobile app testing

After automating the build process, the next step is to automate mobile app testing. As defined by Techtarget,

“Automated software testing is a process in which software tools execute pre-scripted tests on a software

application before it is released into production.”

In this step, test scripts are written and executed with an aim to improve the quality of the software before

its release. In mobile testing, these scripts inspect and deploy compiled binaries to an emulator, simulator, or

a physical mobile device. The two main types of tests in mobile apps are unit testing and functional testing.

Learn more at saucelabs.com

9

In unit testing, the smallest testable parts of an application, called units, are individually and independently

scrutinized for proper operation. Just as in web apps, this is the most basic type of testing for mobile apps,

and a prime candidate for automation.

Functional testing, on the other hand, is a way of checking the functionality of an app to ensure it works as

specified in the requirements. Given the importance of user experience in mobile, and the personalized experience

that users expect, functional testing is even more important for mobile apps than for web apps.

Though the number of available testing tools for mobile are fewer than those for build automation, the ecosystem

has been growing in recent years. Automated testing for mobile helps avoid errors and omissions caused by

manual testing, and greatly reduces the time it takes to ship an app. Because of this, it is important to carefully

consider available tools for mobile test automation.

Tools that enable mobile testing automation

Unit testing: XCTest is the unit testing framework for iOS, which replaces the older OCUnit framework. For Android

apps, jUnit is a built-in open source framework that automates unit testing.

Functional testing: Tools for functional testing in mobile apps fall either in the iOS or Android camp. Here’s a list

of the most popular functional testing tools for iOS and Android:

Most existing solutions support either iOS or Android.

Even if they do support both platforms, they don’t use the

same API. Appium is the only automated testing tool that

supports both iOS and Android equally well. Let’s take a

closer look at Appium.

5. Appium - The leading cross-platform test
automation framework
Appium is the mobile counterpart of the leading automated testing framework for web apps — Selenium. Based

on the WebDriver API that powers Selenium, Appium is well on its way to becoming an industry standard in mobile

app testing.

Appium is built on 4 core philosophies:

1.	Test the same app you submit to the app store

Some test frameworks require you to recompile your app to automate it. However, Appium uses vendor-provided

automation frameworks. This means you won’t need to compile any Appium-specific or third-party code or

frameworks to your app — you’re testing the same app you’re shipping. This way you won’t miss any bugs.

calabash-ios
Frank
UIAutomation
ios-driver
KeepitFunctional

iOS Android

calabash-android
MonkeyTalk
Robotium
UiAutomator
selendroid

Learn more at saucelabs.com

10

2.	Write your tests in any language, using any framework

With Appium you can write automated tests in a programming language different from the application code. This

means you can write programs in Java for Android and Objective C for iOS. In fact, you can write automated test

scripts in just about any modern language.

3.	Use a standard automation specification and API

To extend your existing test automation to mobile, it makes sense to start with something you’re already

familiar with — Selenium’s WebDriver API. As a model, WebDriver is a mature and good place to start for mobile

automation. In fact, Appium is soon to become a core feature of Selenium for testing mobile apps.

4.	Have a large and thriving open-source community effort

Lots of users and contributors help make the tool better for everyone. With the community making decisions on

the development of Appium, vendor lock-in isn’t a concern.

With web browsers you can write one Selenium test that runs on all the different Web browsers, so you can

uncover cross-platform issues, but so far this hasn’t been possible or easy with mobile devices. Appium opens

the door to true cross-platform mobile testing. It enables you to write one test in a programming language of your

choice and to run the test across both iOS and Android. Therefore, any organization evaluating the ideal test

automation solution for mobile apps should take a close look at Appium.

Conclusion
The fragmentation of the mobile ecosystem can cause DevOps to shy away from adopting CI for their mobile

software development life cycle. However, because of the complexity of mobile app development, and high stakes

for the companies involved, CI is even more essential for mobile app development than web apps. Contrary to what

some may believe, mobile CI is not completely different from CI as we’ve always known it. The two most important

goals of mobile CI are still faster releases and improved code quality. These goals can be met by automating the

two vital phases of continuous integration — build, and testing.

The necessary tools for mobile continuous integration have been evolving at a slower pace than the growth of

the mobile economy, but today, there are many capable tools that meet specific needs at every step of the CI

process. Be it a build tool like Gradle, or a test automation tool like Appium, mobile developers who are serious

about adopting CI for mobile can be well-equipped for the task. By seeking to extend CI to also include mobile

development, teams can make a smoother transition to the DevOps culture, and give their organizations an edge

in the fierce mobile battles that have just begun.

Learn more at saucelabs.com

11

With this explosion of devices there will be an equal rise in the demand for manufacturing, developing, and getting

these products into the hands of customers. The Web’s biggest companies like Apple and Google, and startups like

Fitbit all want a slice of this opportunity pie, and are making significant investments to capitalize on it.

This means that Dev and QA teams will be pushed to become more scalable, mobile-centric, and efficient.

Traditional waterfall methodologies for building apps won’t be able to meet these requirements. Teams that

transition to continuous integration and continuous delivery today are most likely to survive the sweeping changes

ahead. Those organizations that allow their development shops to stay in the Web 2.0 era will risk getting left

behind, and becoming irrelevant in a hyper-connected world.

Appendix - The Internet of Things (IoT) is increasing the need for CI

The Internet of Things (IoT) has been dismissed by some as a buzzword that describes a fanciful future that we may

never see. However, just as we once would never have imagined a telephone that could operate without a cable,

we’re witnessing the Internet transforming the most mundane objects in our daily life.

Everything around us is being connected to the Web. We’ve seen the launch of Apple Watch and the experimental

Google Glass, which were two of the most talked about wearable devices. However, even before their launch

we’ve seen efforts to connect gadgets in our homes, devices for monitoring health and fitness, self-driven cars,

Internet-powered parking services, and many more. Consumer wearable devices, and Smart Home devices are

especially poised for explosive growth over the next few years.

Source: Strategy Analytics, October 2014

Global Internet Device Installed Base Forecast

M
ill

io
ns

Internet of Things

Wearables

Smart Home Devices

Smart TVs

Internet Media Devices

Tablets

Smart phones

PCs

2007 2020

0

5000

10000

15000

20000

25000

30000

35000

Learn more at saucelabs.com

12

About Sauce Labs
Sauce Labs is the most secure, reliable solution for automating functional testing for web, mobile, and hybrid

apps. We believe continuous integration and delivery should be simple and painless for software teams. Based

on the acclaimed Selenium and Appium open-source frameworks, our cloud testing platform enables modern

organizations to bring quality applications to market faster and more cost-effectively.

SAUCE LABS INC. 539 Bryant Street #303 San Francisco, CA 94107 USA

